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Abstract

In this paper we discuss stabilization of a nonholonomic system con-
sisting of a unicycle with rider. We show in particular that one can
achieve stability of slow steady vertical motions by imposing a feedback
control force on the rider’s limb.

1 Introduction

In this paper we study the stabilization problem for a model of a rider on
a unicycle using some of the ideas discussed in Zenkov, Bloch and Mars-
den [1998]. In that paper we analyzed various techniques for studying the
stability of motion of nonholonomic mechanical systems. In particular we
considered energy-based methods as well as use of the so-called Lyapunov-
Malkin theorem (see below). In both cases we used the special structure
of nonholonomic mechanical systems with symmetry, where we can divide
up the system variables into internal (or shape) variables and momentum
variables corresponding to symmetry directions. However, unlike holonomic
systems, symmetries do not lead via Noether’s theorem to conservation laws,
and in general momenta corresponding to symmetries obey dynamic momen-
tum equations (see Bloch, Krishnaprasad, Marsden and Murray [1996]). In
some cases we were able to show that stability of motion could nonethe-
less be analyzed using a generalization of energy-momentum methods (see
e.g. Marsden [1992]). In other cases we used a combination of spectral and
nonlinear analysis.

Here we model the rider on a unicycle in this paper by a double pendu-
lum on a wheel, the two pendula representing the body and the limb of the
rider. This leads to a complicated but tractable equations. We then apply
linear control to the pendulum representing the limb of the rider, but con-
clude nonlinear stability of the overall system using the Lyapunov-Malkin
theorem. This theorem, which enables us to conclude overall nonlinear sta-
bility using partial spectral information about the system, turns out to be
particularly useful for the analysis of nonholonomic systems (see Karapetyan
[1981], Markeev [1992], Zenkov, Bloch and Marsden [1998]). In particular
here we apply this technique to achieve stabilization of slow vertical steady
state motions of a homogeneous disk on a horizontal plane with a double
pendulum attached. (Fast motions may also be stabilized and are in fact
easier to handle because of the stabilizing effect of the wheel velocity.)

While the analysis here is quite nontrivial in itself we intend to extend it
both to more complex nonholonomic/robotic systems and to more compli-



cated nonlinear control techniques, for example the matching control tech-
nique discussed in Bloch, Leonard and Marsden [1997, 1998].

2 Modeling the unicycle with rider

We derive here the dynamics of a homogeneous disk on a horizontal plane
with a double pendulum attached. The upper pendulum is free to move in
the plane orthogonal to the disk while the lower pendulum stays “vertical”
in the disk’s plane. We view this as a simple model of a rider on a unicycle.
See Figure 2.1 for details. We accept the following notations:

Figure 2.1: The disk on the horizontal plane.

M = the mass of the disk,
R = the radius of the disk,
A, B = the principal moments of inertia of the disk,
(z,y) = coordinates of the contact point,
0 = the angle between the disk and the vertical axis,
¢ = the heading angle of the disk,
1) = the self-rotation angle of the disk,
«a = the angle between the pendula,
m = the principal pendulum bob mass,
r = the principal pendulum length,
| = the distance from the center of the disk to the bob,
4 = the arm mass,

p = the arm length.



The Lagrangian of this system is

m
L = Kk + E’U?n + %Uz —-U.

In the above formula,

K = % [:icQ + 4% — 2Ridsin6 cos ¢ — 2Ridsin fsin ¢
— 2Ri0 cos Osin ¢ + 2Ry cos 0 cos ¢ + R26% + r2¢? sin? 0]
+ % [A(é2 + ¢? cos? 0) + B(q.bsine-l-l/'))Q] ;
v, =i + 9> + (R +1)%sin” 0 62
—2(R+ 1)z [cos@sin¢9+ sinecosqﬁqﬁ}
+2(R+ 1)y [cosOcosqﬁé—sinOsin(ﬁgﬁ
+ (R+1)? [cos@simqbé+sim€c0sq§qﬁ}2
+ (R+1)? [cos@cosqbé —sinesinqﬁqﬁr,
v =i 4 g
—2:'5{[(R—i—r)cos@é—i—pcos(a—0)(@—9)] sin ¢
+ [(R +7)sinf + psin(a — 0)} cosqﬁqﬁ}
+2y{[(R+r)cos99+pcos(a—0)((34—9)] cos ¢
- [(R +7)sinf + psin(a — 0)} sinq§q£}
+ [(R+r) COSOé-F,OCOS(Oé—H)(O.é—é)}Q
+ [(R+7“) sin00.—,osin(oz—H)(o'z—é)}2
+ [(R+r) sin@ + psin(a — 0)]2q52,
U= MgRcos+mglcosd + pug [(R+r)cos — pcos(a —0)].

The constraints are

i =—t¢pRcos¢, 1§ =—1pRsing.

(2.1)

(2.2)



The equations of motion are

4o, _ oL
dt 96 96’

ddL,  OL.

dt 0a  Oa’

d 0L, .. L
pn 23 = Acos 00y + Beos(a — 0) (& — )1,
d 0L, .. L
7 o —Acos00p — Beos(a — 6) (& — ).

In the above equations,

Le= L|:i::—¢Rcos ¢, j=—1Rsin ¢,
A= MR?* + mR(R+1) + uR(R + 1),
B = uRp.

Next, introduce the nonholonomic momentum and the constrained Routhian

by

and

R =

OL, 0L,

P1 8¢ 3 D2 82/)

1 N2 3 . <2 1 ab
5 (g119 + 2g1206 + goocx ) — 5] DaPb — U(H,a), (23)

respectively. Here

g11 = MR*+ m(R+1)*+p[(R+71)* —2(R+r)pcosa + p*] + A,
g2 = p [(R+r)pcosa — p?]

922 = pip’,

I = MR*sin? 0 + m(R +1)?sin? @

+ u[(R+r)sind + psin(a — 0)]> + A cos? 0 + bsin? 6,
Ilo = MR*sin® + mR(R +1)sinf

+ pR[(R+ r)sin + psin(a — 0)] + Bsinb,
Iy = MR?> + mR? + uR* + B.

See Zenkov, Bloch, and Marsden [1998] for details on nonholonomic momenta
and the Routhian.



The equations of motion become

d OR

dOR _ 2.4

d OR

5% = V.R, (25)
% = [I?'p; + I%po][Acos 060 + Beos(a — 0) (& — 0)], (2.6)
% = —[I'"py + I'%py][Acos 00 + Beos(a — 0)(c — 0)). (2.7)

The first two equations here describe the motion of the double pendulum,
while the second two equations model the (coupled) wheel dynamics. The
covariant derivatives in equations (2.4) and (2.5) are defined by

0
Vo = 2% + [Acos@ — Bcos(a — 0)]

0 0
721 22,y 9 (m 2,y 9
[( p1+ I%ps) o (I"py + I'py) 5|
Vo = 9 + Beos(a — 0) | (I*'p1 + I*?ps) 9 (I'py + I'%py) 9
“ da op1 Ipa |

3 Feedback stabilization

In this section we describe a feedback law that stabilizes slow vertical steady
state motions of the unicycle with rider. We remark that fast steady state
motions of the unicycle without rider do not require stabilization (Zenkov,
Bloch, and Marsden [1998]). It is this fact that makes fast motions of the
unicycle with rider easier to stabilize than slow motions.

We introduce a single control into the upper pendulum. One can think of
this as a controlled limb of the rider. (Of course one can introduce a forward
motion or steering control for the unicycle, but this is not key to the stability
analysis here. Such controls for the wheel are discussed for example in Bloch,
Reyhanoglu and McClamroch [1992], Bloch, Krishnaprasad, Murray and
Marsden [1996] and references therein.)

Our stability analysis is based on the following theorem:

Theorem 3.1 (Lyapunov-Malkin) Consider the system of differential
equations

= Az + X(z,y), y=Y(z,y), (3.1)



where x € R™, y € R", A is an mXxm-matriz, and X (z,y), Y(x,y) represent
higher order nonlinear terms. If all eigenvalues of the matriz A have negative
real parts, and X (z,y), Y (z,y) vanish when x = 0, then the solution z =0,
y = 0 of this system is stable with respect to (x,y), and asymptotically stable
with respect to x. If a solution (z(t),y(t)) is close enough to the solution
z=0,y=0, then
tli}I(I)lofE(t) =90 tlirgoy(t) - ¢

This theorem was used by a number of authors in analyzing stability of
nonholonomic systems. See Karapetyan [1981], Markeev [1992], Zenkov,
Bloch and Marsden [1998] and references therein. In particular, we stress
that the conditions X (0,y) = 0 and Y (0,y) = 0 are valid for all systems
considered in Bloch, Krishnaprasad, Marsden and Murray [1996] and in
Zenkov, Bloch and Marsden [1998].

We begin with a description of substitutions that transform equations
(2.4)-(2.7) into equations of the form (3.1). Consider an upright steady
state motion of the unicycle represented by the relative equilibrium

6 =0, a=0, p1 =0, p2 =Y. (3.2)

Put
p1 = 21 + I5°pY[A0 + B(a — 0)], P2 = Py + 2.

Here and below all tensors and partial derivatives are evaluated at relative
equilibrium (3.2). Equations (2.4)-(2.7) become

; . or'?
9110 + glaé = —ng [21 + I*p5 (A0 + B(a — )]
2 142722 2 722
Do 0°1 0°1
2 [ 562 * T 5090 @
v, U
002 000
12

; . oI
20 + gopét = —a—apg [21 + I§*p3 (A0 + B(a — 6))]

a + {nonlinear terms}, (3.3)

2 92722 2 722
p} [9*1 01
2 [aaae * e ©
2 2
B % 0 — (;TZ a + u + {nonlinear terms}, (3.4)
4= 210, 0,0, 2), (3.5)
Z9 = Z?(Oaaaéadﬂ Z), (36)



where ‘
u = k19+ k204+ k39 + k4d

is linear feedback control. (The nonlinear terms in the a-equation may also
contain nonlinear control inputs, but this is not assumed here—see also the
remarks below.) Note that Z; and Zs vanish when 0=c=0.

The shape equations (the first two of equations (2.4)-(2.7)) after being
solved for 6 and & become

b=y, y=Av+ By+ Cz+W(v,y,2),

where v = (0,a), y = (é,d) and W (v,y, z) represent the nonlinear terms.
Suppose that we can choose a linear control which forces all eigenvalues of

the matrix
0 I
(40 e

to belong to the left half plane (see theorem 4.1 below). Then det A # 0,
and we can find the solution v = x(z) of the equation

Av+Cz+ W (v,0,2z) = 0. (3.8)

Introduce new variables x by v = z + x(z). Then in the variables (z,y, z)
equations (2.4)-(2.7) become

T =y+ X(z,y,2),
9= Ax+ By+Y(x,y, 2),
z=Z(v,y,2),

where

0
X(xayaz) = —a—ﬁz(m,y,z),

Y(z,y,2) = Ax(2) + Cz + W(z + x(2),y, 2),
Z(z,y,z) = Z(z + x(2),y, 2).

Observe that the nonlinear terms X(z,y, z), Y (z,y,2), and Z(z,y,z) van-
ish when z = 0 and y = 0, because Z(r,0,z) = 0 and Ax(z) + Cz +
Wi(x(z),0,z) = 0. By the Lyapunov-Malkin theorem, equilibrium (3.2) is
stable.



4 Existence of control

In this section we show how to choose the linear feedback control that forces
the spectrum of matrix (3.7) to belong to the left half plane.

We note first that the coefficients of the characteristic polynomial \* +
a1 X® + agA? + az )\ + a4 of matrix (3.7) are linear functions in the gain para-
meters (k1, ko, k3, kq): There exist a matrix L and a vector M such that

a=Lk+ M.

In the above formula a = (a1, a9, a3, aq and k = kq, ko, k3, k4. Direct compu-
tation shows that det L is a rational function of the parameters of the system
and p§ and thus generically det L # 0. The explicit formula however is very
complex and we omit it here. Therefore the Routh-Hurwitz conditions

a; > 0, ajas —agz > 0, (a1as —az)as — (a1)2a4 > 0, ag >0

for the spectrum of matrix (3.7) to be in the left half plane can always be
satisfied by an appropriate choice of the gain parameters.
Summarizing, we have:

Theorem 4.1 There exists a non-empty stability region S in the space of the
gain parameters. For any (ki, ko, ks, kq) € S the spectrum of (3.7) belongs to
the left half plane and therefore by the Lyapunov-Malkin theorem the steady
state motion (3.2) is stable.

Remark. We emphasize that the Lyapunov-Malkin theorem can be used
for nonlinear feedback stabilization. It extends a spectral stability condition
to a nonlinear setting. We expect that the domain of the local coordinates
(r,8) can be expanded by an appropriate choice of nonlinear control terms.
The basin of attraction therefore may be enlarged. We intend to address
this issue in a future publication.
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